
July 26, 2007 14:17 WSPC/141-IJMPC 01059

International Journal of Modern Physics C
Vol. 18, No. 5 (2007) 861–882
c© World Scientific Publishing Company

PSEUDO RANDOM NUMBER GENERATION WITH THE AID OF

ITERATED FUNCTION SYSTEMS ON R
2

P. BOUBOULIS

Department of Informatics and Telecommunications

Telecommunications and Signal Processing

University of Athens

Panepistimiopolis 157 84, Athens, Hellas

bouboulis@di.uoa.gr

Received 18 July 2006
Accepted 27 July 2006

Two new pseudorandom number generators, based on iterated function systems (IFS),
are introduced. An IFS is created based on an arbitrary seed and a set is constructed
using the deterministic iteration algorithm (DIA). From this set pseudo random numbers
have been constructed. The generators have big periods and pass all major statistical
tests, indicating that they can be used in any application requiring random numbers,
such as cryptography.

Keywords: Fractal interpolation functions; iterated function systems; pseudo-random
number generator.

PACS Nos.: 05.10.-a, 05.45.Df.

1. Introduction

Fractal theory has been drawing considerable attention of the researchers in various

scientific areas. The application of fractals created by iterated function systems

(IFS) in the area of image compression is probably the most famous one (see Refs. 3,

13, 11, 10, 7 and 8). Applications of fractal surfaces have, also, been found in

computer graphics, image compression, Metallurgy, Geology, Chemistry, Medical

sciences and several other areas, where there is great need to construct objects that

are extremely complex (see Refs. 17, 20, 9 and 18).

An IFS is defined as a complete metric space X with a distance function ρ and

a finite set of contractive mappings {wi : X → X, for i = 1, 2, . . . , M}. IFSs have

received a great deal of attention because they are capable of producing complicated

and varied images (which we may consider to be of non-integer dimension) with

as little as two maps. Fractal interpolation functions (FIFs) were introduced by

Barnsley.5,4 He used IFSs consisted of affine mappings, whose attractor is the graph

861

July 26, 2007 14:17 WSPC/141-IJMPC 01059

862 P. Bouboulis

of a continuous function that interpolates given data points. In Refs. 15, 16 and 19.

FIFs are used to represent discrete sequences.

Pseudo random number generators (PRNGs) are needed in various areas of

computer science, such as cryptography, simulation, several numerical algorithms

etc. The focus of this paper is to introduce a new method to generate pseudo random

numbers, with the application of IFS theory. A fractal set, which is depended on

a seed and it is composed of a number of integer values, is produced. A slight

change of the seed produces an entirely different set, thus the emerging set of

pseudo random numbers will, also, be diversed. In Sec. 2 the background theory

is presented. Synthesis techniques are given for construction of this fractal set,

in Sec. 3. Section 4 presents some statistical properties of the generators. Detailed

algorithms describing the operation of the proposed PRNGs are presented in Sec. 5.

One may use one of those PRNGs to encrypt any given discrete sequence of data

points by applying a simple XOR operation. Finally, Sec. 6 presents the results of

several statistical tests that were applied to a number of random bits produced by

these PRNGs.

2. Background

2.1. Iterated function systems

As it was mentioned above, an hyperbolic IFS is defined as a pair of a complete

metric space (X, ρ) together with a finite set of continuous contractive mappings

wi : X → X, for i = 1, 2, . . . , M , with respective contraction factors si. Note that

if the mappings are not contractive the system is called simply IFS. Sometimes,

in practice, the word “hyperbolic” is dropped. In this paper, however, it is im-

portant to distinguish the hyperbolic-contractive IFS (which has a unique fixed

point-attractor) from the non-contractive one.

The attractor of a hyperbolic IFS is the unique set A for which A =

limk→∞ W k(A0) for every starting set A0, where

W (A) =
N
⋃

i=1

wi(A) ∀ A ∈ H(X) ,

and H(X) is the metric space of all nonempty compact subsets of X with re-

spect to the Hausdorff metric. The Hausdorff metric is defined by h(A, B) =

max{min{ρ(x, y) : y ∈ B} : x ∈ A}, ∀ A, B ∈ H(X). Using the compactness

of A and B it can be shown that this definition is meaningful (see Ref. 5).

The attractor of the IFS may be constructed with either of two algorithms. The

first, called the deterministic iteration algorithm or DIA for short, is implemented as

follows. Let A0 be any nonempty compact set (e.g., a single point). Then, we apply

the maps to A0 in sequential order to yield a new set A1 (i.e., A1 =
⋃N

i=1 wi(A0)).

Now, we temporarily save A1, discard A0 and apply the maps sequentially to pro-

duce A2 =
⋃N

i=1 wi(A1) etc. The series of sets {A0, A1, A2, . . .} converges to the

attractor of the IFS. The second algorithm for construction of the attractor of an

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 863

IFS is the random iteration algorithm or RIA. Let x0 be any point in X . From the

set of maps, we choose one map at random and apply that map to x0 to yield a

new point x1. Then we choose another map at random and apply that map to x1

to produce the point x2 etc. Under the condition that the probability of choosing

a particular map is not allowed to be zero, the set {x0, x1, x2, . . .} traces out the

attractor. More information on these algorithms can be found in Ref. 5.

2.2. Fractal interpolation functions

Let X = [0, 1] × R and ∆ = {(xi, yi) : i = 0, 1, . . . , N} be an interpolation set

with N + 1 interpolation points such that 0 = x0 < x1 < · · · < xN = 1. The

interpolation points divide [0, 1] into N intervals Ii = [xi−1, xi], i = 1, . . . , N ,

which we call sections. We define N affine contractive mappings wi : X → R
2 of

the form

wi

(

x

y

)

=

(

ai 0

ci si

)

·

(

x

y

)

+

(

ei

fi

)

, for i = 1, 2, . . . , N . (1)

Affine maps such as Eq. (1) are often called shear transformations. Vertical segments

are mapped to vertical segments contracted by the factor si. The parameter si is

called the contraction factor of the map wi. It is easy to show that if |si| < 1 then

there is a metric d equivalent to the Euclidean metric, such that wi is a contraction

(i.e., there is ŝi : 0 ≤ ŝi < 1 such that d(wi(x), wi(y)) ≤ ŝid(x,y), see Ref. 5). Each

affine map wi is constrained to map the endpoints of the set of the interpolation

points ∆ to the endpoints of the section Ii. That is,

wi

(

x0

y0

)

=

(

xi−1

yi−1

)

, wi

(

xN

yN

)

=

(

xi

yi

)

, for i = 1, 2, . . . , N . (2)

From Eq. (2), four linear equations arise which can always be solved for ai, ci,

ei, and fi in terms of the coordinates of the interpolation points and the vertical

scaling factor si. Thus, once the contraction factor si for each map has been chosen,

the remaining parameters may be computed by

ai =
xi − xi−1

xN − x0
(3)

ei =
xNxi−1 − x0xi

xN − x0
(4)

ci =
yi − yi−1

xN − x0
− si

yN − y0

xN − x0
(5)

fi =
xNyi−1 − x0yi

xN − x0
− si

xNy0 − x0yN

xN − x0
. (6)

The IFS {X, w1−N} has a unique fixed point (attractor) A, which is the graph of

a continuous function f (f : [0, 1] → R) that interpolates the points of ∆. The

function f is called fractal interpolation function (FIF).

July 26, 2007 14:17 WSPC/141-IJMPC 01059

864 P. Bouboulis

Next the definition of the box counting fractal dimension is given. A fractal

dimension is a number that “measures” the density of the space that a fractal

occupies. While there are several fractal dimensions in use, the box counting fractal

dimension is certainly the most popular one. Consider A ∈ H(X) and let N (G, ε)

denote the smallest number of closed balls of radius ε needed to cover A. Then if

D = D(A) = lim
ε→0

{

log(N (A, ε))

log(1/ε)

}

exists, it is called the box counting fractal dimension of A. The box counting fractal

dimension of the graph A of the FIF, defined above, is the unique real solution D

of

N
∑

n=1

|sn|a
D−1
n = 1 , (7)

if
∑N

n=1 |si| > 1 and the interpolation points do not all lie on a single straight

line. Otherwise the box counting dimension of A is one. In the case where the

interpolation points are equally spaced, it follows that an = 1/N , n = 1, 2, . . . , N ,

hence Eq. (7) becomes

D = 1 +
log(

∑N
n=1 |sn|)

log(N)
. (8)

Notice that
∑N

n=1 |si| < N . Thus the dimension of a FIF is always less than two.

However, we can make it arbitrarily close to two by choosing scaling factors si close

to one (or −1).

2.3. Hidden variable fractal interpolation functions

Let X = [0, 1] × R
2 and ∆ = {(xi, y1,i, y2,i) : i = 0, 1, . . . , N} be an interpolation

set with N + 1 interpolation points such that 0 = x0 < x1 < · · · < xN = 1. The

interpolation points divide [0, 1] into N intervals Ii = [xi−1, xi], i = 1, . . . , N , which

we call sections. We define N affine contractive mappings wi : X → R
3 of the form

wi





x

y1

y2



 =





ai 0 0

ci s11,i s12,i

ei s21,i s22,i



 ·





x

y1

y2



+





bi

di

fi



 , for i = 1, 2, . . . , N . (9)

It is easy to show that if the spectral radius ρ(Si) of the matrix

Si =

(

s11,i s12,i

s21,i s22,i

)

is lower than one, then there is a metric equivalent to Euclidean metric, such that

wi is a contraction (see Ref. 6). (If |sjk,i| < 1, j, k = 1, 2, then ρ(Si) < 1 for

i = 1, . . . , N).

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 865

Each affine map wi is constrained to map the endpoints of the set of the inter-

polation points ∆ to the endpoints of the section Ii. That is,

wi





x0

y1,0

y2,0



 =





i − 1

y1,i−1

y2,i−1



 , wi





xN

y1,N

y2,N



 =





xi

y1,i

y2,i



 , for i = 1, 2, . . . , N . (10)

From Eq. (10), four linear equations arise, which can always be solved for ai, bi, ci,

di, ei and fi in terms of the coordinates of the interpolation points and the scaling

factors s11,i, s12,i, s21,i, and s22,i. Thus, once the four contraction factors for each

map have been chosen, the remaining parameters may be computed by

ai =
xi − xi−1

xN − x0
(11)

bi =
xNxi−1 − x0xi

xN − x0
(12)

ci =
y1,i − y1,i−1

xN − x0
− s11,i

y1,N − y1,0

xN − x0
− s12,i

y2,N − y2,0

xN − x0
(13)

ei =
y2,i − y2,i−1

xN − x0
− s21,i

y1,N − y1,0

xN − x0
− s22,i

y2,N − y2,0

xN − x0
(14)

di = y1,0 − cix0 − s11,iy1,0 − s12,iy2,0 (15)

fi = y2,0 − eix0 − s21,iy1,0 − s22,iy2,0 . (16)

The hidden variable IFS (HVIFS) {X, w1−N} has a unique fixed point (attractor) A,

which is the graph of a continuous function f (f : [0, 1] → R
2) that interpolates the

points of ∆. The function f is called hidden variable fractal interpolation function

(HVFIF).

2.4. Non hyperbolic IFSs

While fractal interpolation functions and hidden variable fractal interpolation func-

tions have been studied extensively (see Refs. 1, 12, 2, 4, 5, 14 and 6), the study

of non-hyperbolic affine IFSs on R
2 is very poor. Such an IFS does not have, in

general, a fixed point (attractor). The set An after n iterations will depend on the

initial set and the parameters of each map.

Consider X = [0, 1] × R and affine maps wi, i = 1, 2, . . . , N , of the form given

by Eq. (1) with si > 1, ai < 1, i = 1, . . . , N . Let also (x(0), y(0)) be any point of X

and I = {i1, i2, . . . , in, . . . : ik ∈ {1, 2, . . . , N}} an arranged set defining the “path”

that this point “follows” after the application of the RIA or DIA (i.e., first we apply

map wi1 , then wi2 etc.). Then, if (x(n), y(n)) is the produced point at the nth step

of the construction algorithm (with initial point (x(0), y(0))), after the application

of the map win
we have:

July 26, 2007 14:17 WSPC/141-IJMPC 01059

866 P. Bouboulis

x(1) = ai1x
(0) + bi1

y(1) = M1 + si1y
(0) , where M1 = ci1x

(0) + di1

x(2) = ai2x
(1) + bi2

y(2) = M2 + si2y
(1)

= M2 + siM1 + si1si2y
(0) , where M2 = ci2x

(1) + di2

·

·

·

x(n) = ain
x(n−1) + bin

y(n) = Mn + sin
Mn−1 + · · · +

n
∏

k=1

sky(0) , where Mn = cin
x(n) + din

y(n) =
n
∏

k=1

sik

(

Mn
∏n

k=1 sik

+
Mn−1
∏n−1

k=1 sik

+ · · · + y(0)

)

In this case the following Lemma stands.

Lemma 1. Let (x(0), y(0)) and (x(0), z(0)) be two initial points of X. If we apply

the affine maps wi, i = 1, 2, . . . , N to these points using any path I, then

lim
n→∞

|y(n) − z(n)| = +∞ .

Proof. At the nth step of the RIA we will have:

y(n) = Mn + sin
Mn−1 + · · · +

n
∏

k=1

sik
y(0) ,

z(n) = Mn + sin
Mn−1 + · · · +

n
∏

k=1

sik
z(0) ,

where

Mn = cin
x(n) + din

.

Thus, if sm = min{|si|, i = 1, 2, . . . , N},

|y(n) − z(n)| =

n
∏

k=1

|sik
||y(0) − z(0)|

> sn
m|y(0) − z(0)| .

Hence, since sm > 1 we have the result.

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 867

The above lemma ensures that the affine IFS considered (with all |si| > 1)

does not have a fixed point. In fact, we see that for arbitrary small variations of

the initial set used with either the RIA or the DIA, the emerged sets at the nth

step will be far apart. This observation will be used later on. (In fact, the lemma

implies that if, under a fixed path, the point (x(0), y(0)) produces bounded values

(i.e., |y(n)| < M, ∀ n ∈ N), then for every other point (x(0), z(0)) (with z(0) 6= y(0))

limn→∞ |z(n)| = +∞.)

For the the hidden variable case, the spectral radius ρ(Si) of the matrix

Si =

(

s11,i s12,i

s21,i s22,i

)

must be greater than one (∀ i = 1, 2, . . . , N), so that the IFS is non contractive.

Thus, if one chooses sjk,i > 1, j, k = 1, 2, i = 1, . . . , N , the IFS will be certainly

non contractive and similar results as in Lemma 1 will apply.

3. Construction of PRNGs Based on a Seed

Loosely speaking, pseudorandom generators are efficient deterministic programs

which expand short randomly selected seeds into much longer pseudorandom bit

sequences. They are defined as computationally indistinguishable from truly ran-

dom sequences by efficient algorithms and needed in various areas of computer

science. Applications in cryptography and simulation are widely known. Here, a

new method of producing pseudorandom sequences using iterated function systems

is introduced. First, we use contractive IFSs, which produce sequences with rela-

tively “bad” statistical properties and then we use non contractive IFSs which we

demonstrate that they have “very good” properties.

The traditional approach to a PRNG is that it has a state that evolves in a finite

state space S, according to a recurrence of the form sn = f(sn−1, sn−2, . . . , sn−k),

n > k, (usually k = 1) where the initial state s0 ∈ S is called the seed and the

function f : S → S is called the transition function. At step n, the generator

outputs un = g(sn), where g : S → Ψ is called the output function. Ψ is a finite

space such as {0, 1} (at step n the generator outputs a bit) or {0, 1, 2, . . . , 255}.

However the approach discussed here is somewhat different. The seed is a set

(C) of N +1 numbers which we use to form an IFS. This IFS takes an initial set A0

and “expands” it using the DIA. Thus, at each step a new set of numbers emerges.

After K steps the set AK consists of NK+1 + 1 numbers, which we use to produce

the output of the PRNG (i.e., the least significant bit of each number). The quality

of the pseudorandom sequence constructed, depends on the IFS one uses, therefore

the seed should be chosen as random as possible.

3.1. A PRNG constructed from a FIF

First, some definitions are given.

July 26, 2007 14:17 WSPC/141-IJMPC 01059

868 P. Bouboulis

Definition 1. Consider x ∈ R and P ∈ N. Then there is k ∈ Z, such that kP ≤

x < (k + 1)P . We define

y ≡ x(mod P) := x − kP ∈ [0, P) .

Definition 2. Consider x ∈ R. Then there is n ∈ Z, such that n ≤ x < n + 1. We

define

[x] = n .

Let C = {c0, c1, . . . , cN} be a seed consisted of N + 1 integer numbers, where

0 ≤ ci ≤ 255, ci ∈ N, for i = 0, 1, . . . , N . We take the interpolation points as follows:

xi = S · i , yi = ci for i = 0, 1, . . . , N

with

S =

N
∑

i=0

ci .

Then we choose arbitrary contractions factors si and we construct the attractor A

(which is the graph of a continuous fractal interpolation function f that interpolates

the data) using the deterministic algorithm. Usually, we choose as initial set A0

the set of the interpolation points. Note that the interpolation points should not

be collinear with (x0, y0) and (xN , yN) (in this case the attractor is the straight

line connecting those two points). The seed should be chosen appropriately. The

produced attractor consists of M + 1 points in R
2, thus A = {(x̃j , ỹj), for j =

0, 1, . . . , M} with x̃0 < x̃1 < x̃2 · · · < x̃M . The number M depends on the number

of iterations that we use to form the attractor (M = NK+1 + 1, where K the

number of iterations). We limit our interest to the y coordinates of the graph of f .

Let Ef = {ỹj , where(x̃j , ỹj) ∈ A} be an arranged set. We define Ef [j] = yj , the jth

element of the set for j = 0, 1, . . . , M . It is evident that f depends on the set C.

A different seed C ′ will produce another FIF f ′. The problem is that if the sets C

and C ′ are similar then Ef and Ef ′ will be very “close” (see Fig. 1).

The above construction produces functions that change values rapidly and are

non predictable. The problem is that two FIFs constructed using similar interpo-

lation points (and similar contraction factors) look alike. Thus, if two seeds have a

lot of numbers equal to one another, the produced FIFs will have almost common

parts. Therefore, a method of producing FIFs, that even the slightest change of

the seed will lead to an entirely different FIF, is needed. In order to achieve this,

one must choose the interpolation points in such a way, that small variations of

the initial seed will have significant effect on the values of the interpolation points.

Thus, another FIF is constructed as follows. We take

xi = S ∗ i ,

yi = cφ(i) + cφ(i+1) · 256 + · · · + cφ(i+L−1)) · 256L−1 ,

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 869

0 500 1000 1500 2000 2500
−150

−100

−50

0

50

100

150

200

250

300

350

Fig. 1. Construction of two FIFs using the codes C = {52, 6, 49, 205, 8, 92, 134, 206} (black line)
and C′ = {53, 6, 49, 205, 9, 91, 134, 200} (gray line). In both cases the contraction factors that have
been used are 0.8, 0.7, −0.8, 0.9, −0.7, 0.6, −0.9. For the computation of the attractor we used
the DIA (three iterations, 2402 points). In the figure only the sets Ef and Ef ′ are shown. The
x axes corresponds to the index j of each point. It is obvious that the two graphs are extremely
close.

where

φ(j) = j mod (N + 1) , L > 0 , L ∈ N .

The same construction as before is used and the attractor B of this IFS is produced,

which is the graph of a FIF g and it consists of M +1 points. Then we produce the

arranged set Eg as above. Now even the slightest change of the seed C will produce

a very different attractor B′ leading to a very different arranged set Eg′ . However,

it must be ensured that the interpolation points will not be collinear, since in that

case the attractor will be a straight line. Note that the contraction factors should be

close to 1 (or −1), so that the FIF will be as “rougher” as possible. The value of L

is been chosen a priori. This value should be as bigger as possible, but smaller than

N + 1. The value of L depends, also, from the floating point representation of the

computer used to construct the FIF. For the commonly used 64 bit representation,

values of L greater than five will lead to overflow errors. However, it is crucial for L

to take a value as large as possible, since the constructed FIF depends, mainly on

the interpolation points. Thus larger variations of the interpolation points will lead

to FIFs that are more complex. The use of a machine with 128 bit floating point

representation (or more) is more preferable.

Having the FIF described above, one can easily construct a set of random bits

as follows:

July 26, 2007 14:17 WSPC/141-IJMPC 01059

870 P. Bouboulis

0 500 1000 1500 2000 2500
−3

−2

−1

0

1

2

3
x 108

Fig. 2. Construction of two sets Eg (black line) and Eg′ (gray line) using the codes C =
{52, 6, 49, 205, 8, 92, 134, 206} and C ′ = {53, 6, 49, 205, 8, 92, 134, 206}. In both cases the contrac-
tion factors that have been used are 0.95, 0.9, −0.95, 0.9, −0.95, 0.95, −0.94, 0.92 and L = 4.
For the computation of the attractor we used the DIA (three iterations, 2402 points). The x axes

corresponds to the index j of each point. It is obvious that even though C and C ′ are almost
identical the sets Eg and Eg′ are very different.

FPRNG1(C) = {|[Eg [j]]| mod 2; j = 1, 2, . . . , M + 1} .

The corresponding PRNG will be referred to as affine FIF PRNG.

3.2. A PRNG constructed from a non hyperbolic affine IFS

Consider the affine IFS, as defined above, but now let each |si|, i = 1, 2, . . . , N be

greater than one. In this case (as shown above), there is not attractor for the IFS.

However one can modify the deterministic algorithm to produce a set of points from

this IFS. Let, again,

xi = S ∗ i ,

yi = cφ(i) + cφ(i+1) · 256 + · · · + cφ(i+L−1) · 256L−1

φ(j) = j mod (N + 1) , L > 0 , L ∈ N

and P = 256L. The initial set B0 = A0 = {x0
i = (xi, yi); i = 0, 1, . . . , N} is (as

always) the set of the interpolation points. The maps wi, i = 1, 2, . . . , N , are applied

to B0, in sequential order, to yield a new set A1 = {x1
k = (x1

k , y1
k); k = 0, 1, . . . , N2}.

Then, the set

B1 := {y1
k = (x1

k , ŷ1
k); where ŷ1

k = y1
k mod P, k = 0, 1, . . . , N2} ,

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 871

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

9

Fig. 3. Construction of a set using the non hyperbolic affine IFS using the codes C =
{52, 6, 49, 205, 8, 92, 134, 206} and the contraction factors 30.95, 30.9, −30.95, 30.9, −30.95, 30.95,
−30.94, −33.92. For the computation of the attractor we used the Modulus Deterministic Algo-
rithm (four iterations) and L = 4. The x axes corresponds to the index j of each point. It is
obvious that the points are scattered throughout the plane.

is constructed and the maps are applied to B1 to yield A2, which in the sequel is

used to construct B2, etc. After K iterations a bounded set BK will emerge, from

which a set of random bits is produced as follows

FPRNG2(C) = {[ŷK
k mod 2]; k = 0, 1, . . . , NK+1} .

3.3. A PRNG constructed from a non hyperbolic affine hidden

variable IFS

Analogously to the above construction, consider two seeds

C1 = {c1,0, c1,1, . . . , c1,N} and C2 = {c2,0, c2,1, . . . , c2,N}

and let

xi = S ∗ i ,

y1,i = c1,φ(i) + c1,φ(i+1) · 256 + · · · + c1,φ(i+L−1)) · 256L−1 ,

y2,i = c2,φ(i) + c2,φ(i+1) · 256 + · · · + c2,φ(i+L−1)) · 256L−1 ,

where

φ(j) = j mod (N + 1) , L > 0 , L ∈ N

July 26, 2007 14:17 WSPC/141-IJMPC 01059

872 P. Bouboulis

and P = 256L. The initial set B0 = A0 = {x0
i = (xi, y1,i, y2,i); i = 0, 1, . . . , N} is

the set of the interpolation points. The maps wi, i = 1, 2, . . . , N , are applied to B0,

in sequential order, to yield a new set A1 = {x1
k = (x1

k , y1
1,k, y2

2,k); k = 0, 1, . . . , N2}.

Then, the set

B1 := {y1
k = (x1

k , ŷ1
1,k, ŷ1

2,k) ;

where

ŷ1
j,k = y1

j,k mod P, ŷ2
j,k = y2

j,k mod P, k = 0, 1, . . . , N2, j = 1, 2}

is constructed and the maps are applied to B1 to yield A2 which, in turn, is used

to construct B2, etc. After K iterations, a bounded set BK is obtained, from which

a set of random bits is created as follows

FPRNG2(C) = {[ŷK
1,k mod 2], [ŷK

2,k mod 2]; k = 0, 1, . . . , NK+1} .

4. Statistical Properties

The random bits produced by the two latter PRNGs are uniformly distributed over

{0, 1}. The following well known facts ensure this assertion.

Proposition 1. Let X be a random variable uniformly distributed over [0, P)

(where P ∈ N).

(1) If Q ∈ N such that P mod Q = 0, then Y = X mod Q is another random

variable uniformly distributed over [0, Q).

(2) If WP : [0, P) → [0, P) : WP (x) = s ·x+ b(mod P), s ∈ Z, b ∈ R. Then WP (X)

is another random variable uniformly distributed over [0, P).

(3) [X] is another random variable uniformly distributed over {0, 1, 2, . . . , P − 1}.

(4) If P = 2λ, λ ∈ N and κ ∈ N (κ < λ), then [X(mod 2κ)] = [X] mod 2κ is

another random variable uniformly distributed over {0, 1, 2, . . . , 2κ − 1}.

Proposition 2. Let X, Y be independent random variables uniformly distributed

over [0, P). Consider, also, a map WP : [0, P) → [0, P) : WP (x) = s ·x+ b(mod P),

s ∈ Z, b ∈ R. Then WP (X), WP (Y) are independent random variables uniformly

distributed over [0, P).

Proposition 1 implies that if the seed C = {c0, c1, . . . , cN} is a sequence of num-

bers which are uniformly distributed over an interval [0, P) and the contraction

factors of all maps are integers (i.e., si ∈ Z, i = 1, 2, . . . , N), then the numbers pro-

duced at each iteration will, also, be uniformly distributed over [0, P). Furthermore,

if P mod 2 = 0, then the bits produced after K steps will be uniformly distributed

over {0, 1}.

Proposition 2 provides some properties about the relation of two sets of numbers

produced by two different seeds. If the seeds are independent, then the produced

sets will contain bits uniformly distributed which will, also, be independent.

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 873

5. Algorithms

In this section, two algorithms are presented, that may be used to generate pseudo

random numbers using IFSs. The algorithms are based on the construction de-

scribed in Sec. 3, which has been slightly modified for practical reasons.

A. The Modulus Deterministic Algorithm (MDA)

This algorithm takes an arbitrary seed, forms an IFS and an initial set and computes

random bytes by applying the modified deterministic algorithm to the initial set.

In each step it stores the points of the produced set to memory and uses them to

produce the set for the next step.

• Choose a seed Γ = {γ0, γ1, . . . , γN}, 0 ≤ γi ≤ 255, i = 0, 1, . . . , N . Choose, also,

the number of iterations K. (The algorithm constructs NK+1 + 1 bytes).

• From the seed, construct the set C = {c0, c1, . . . , cN}, ci = γi, i = 0, 1, . . . , N

and the contraction factors {s1, s2, . . . , sN} such that |si| > 1, i = 1, 2, . . . , N

(for the statistical testing the equation si = (−1)γi · [γi/4 + 5] was used).

• For l = 1 to 8 do

— Form the IFS as described in Sec. 3 using the points:

xi = S ∗ i, S =

N
∑

i=0

ci

yi = cφ(i) + cφ(i+l) · 256 + · · · + cφ(i+l·(L−1)) · 256L−1

φ(j) = j mod (N + 1) , L > 0 , L ∈ N

Consider P = 256L and the initial set A0 = {(xi, yi), i = 0, 1, . . . , N}.

— Set B0 = A0.

— For j =1 to K do:

(a) Produce the set Aj by applying the maps of the IFS in sequential order

to Bj−1.

(b) Next produce the set Bj = {yj
k = (xj

k , ŷj
k); where ŷj

k = yj
k mod P, k =

0, 1, . . . , N j+1}.

— Form the set Ωl = {ωl,m = [ŷK
m] mod 256, m = 0, 1, . . . , NK+1}. This set

consists of NK+1 + 1 integer (1-byte) numbers.

— Remove from Ωl the points of the initial set. (This is done to remove any

explicit information for the seed)

• Compute the set Ω = Ω1 ⊕ Ω2 ⊕ · · · ⊕ Ω8 = {ωm = ωm,1 ⊕ · · · ⊕ ωm,8, m =

0, . . . , NK+1 − N − 1 = M0}, where ⊕ is the XOR operator.

• Set PRNG = Ω.

Note that, as stated above, in each step all the produced points are used to

calculate new ones. This is the main advantage of the proposed scheme but, at the

same time, its main drawback, from the implementation point of view. In the Kth

July 26, 2007 14:17 WSPC/141-IJMPC 01059

874 P. Bouboulis

step of the iteration, the set BK consists of NK+1 + 1 points. In order to compute

the set BK+1, all the points of BK need to be stored into memory. For values of K

greater than six, the amount of memory required becomes prohibitive for practical

purposes, even if the value of N is less than 16. So, one cannot construct arbitrarily

large sets, due to memory limitations. The only alternative is to store the points,

that are produced at each step, into the hard disk instead of the memory. However,

this idea doesn’t solve the problem entirely. The number of points produced at each

step increases exponentially.

The following algorithm describes some modifications of the construction of

the affine IFS PRNG, which allow us to overcome this problem. The algorithm

constructs random 1-byte integers. It takes a seed consisted of N +1 1-byte integers,

it forms an IFS and an initial set A1
0 and then computes several points using the

modified deterministic algorithm. Then, it extracts from those points a new initial

set A2
0 and using the same IFS computes several new points, e.t.c. Lemma 1 ensures

that different initial sets will produce very different points.

B. The Recycled Modulus Deterministic Algorithm (RMDA)

• Choose a seed Γ = {γ0, γ1, . . . , γN}, 0 ≤ γi ≤ 255, i = 0, 1, . . . , N . Choose, also,

the number of iterations K.

• Set PRNG = �.

• From the seed construct the sets C = {c0, c1, . . . , cN}, ci = γi, i = 0, 1, . . . , N ,

D = {δ0, δ1, . . . , δN}, di = γi, i = 0, 1, . . . , N and E = {ε0, ε1, . . . , εN}, ei = γi,

i = 0, 1, . . . , N .

• Do:

— For l = 1 to 8 do

(a) Form the IFS using the points:

xi = S ∗ i, S =

N
∑

i=0

ci

yi = cφ(i) + cφ(i+l) · 256 + · · · + cφ(i+l·(L−1)) · 256L−1

φ(j) = j mod (N + 1) , L > 0 , L ∈ N

and the contraction factors {s1, s2, . . . , sN} such that |si| > 1, i =

1, 2, . . . , N (for the statistical testing the equation si = (−1)εi · [εi/4 + 5]

was used). Consider P = 256L and the initial set A0 = {(xi, zi), i =

0, 1, 2, . . . , N}, where

xi = S ∗ i, S =

N
∑

i=0

ci

zi = δφ(i) + δφ(i+1) · 256 + · · · + δφ(i+(L−1)) · 256L−1

φ(j) = j mod (N + 1) , L > 0 , L ∈ N

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 875

(b) Set B0 = A0.

(c) For j = 1 to K do:

• Produce the set Aj by applying the maps of the IFS in sequential order

to Bj−1.

• Next produce the set Bj = {yj
k = (xj

k , ŷj
k); where ŷj

k = yj
k mod P, k =

0, 1, . . . , N j+1}.

(d) Form the set Ωl = {ωl,m = [ŷK
m] mod 256, m = 0, 1, . . . , NK+1}. This set

consist of NK+1 + 1 integer (1-byte) numbers.

(e) Remove from Ωl the points of the initial set. (This is done to remove any

explicit information for the seed).

— Compute the set Ω = Ω1 ⊕ Ω2 ⊕ · · · ⊕ Ω8 = {ωm = ωm,1 ⊕ · · · ⊕ ωm,8, m =

0, . . . , NK+1 − N − 1 = M0}.

— Set PRNG = PRNG ∪Ω.

— Extract 2N + 2 points from Ω and set N + 1 of them as the new set

D (which is used to form the initial set A0 and the rest N + 1 of them

as the new set E (which is used to compute the contraction factors).

Choose the points {ω(λ−1)M0/(N+1)+M0/2N+2, λ = 1, 2, . . . , N + 1} = D and

{ω(λ−1)M0/(N+1)+M0/2N+2+1, λ = 1, 2, . . . , N + 1} = E.

Until the set PRNG has more elements than those required.

Note, that in both algorithms N should be chosen so that N + 1 is a prime

number. In this case the calculation of each interpolation point yi will depend on

L different numbers of the seed. The algorithms produce eight sequences of pseudo

random 1-byte numbers and then combine them (using a XOR operation) to create a

single sequence. The emerged sequence will, also, contain uniformly distributed bits

(Lemma 1 for k = 8). This approach is somewhat different than the one described

in Sec. 3. This one is selected to add more complexity. However, both technics work

well and give sequences with similar properties.

The first algorithm describes a PRNG with period of +∞ (at least in theory)

since there is no recurring pattern involved with the IFS (keep in mind, however,

that computers are finite-state machines). The second algorithm describes a PRNG

with maximum period (NK −N) · 256(N+1) (after that, the seeds will repeat them-

selves). Remember that, in both algorithms, the seed should be chosen such that

the emerging interpolation points won’t be collinear. Similar algorithms may be eas-

ily constructed to produce random 1-byte integers using the affine HVIFS scheme.

Here a seed, consisted of 2N + 2 1-byte integers is needed. One should note (as

stated earlier) that for each chosen seed the produced sequence of random numbers

is different and depends largely of the seed’s numbers. A trivial selection of the seed

(all points collinear) will lead to a trivial PRNG. The number of iterations, also,

has to be chosen as larger as possible.

These PRNGs may be used in any application requiring random numbers. In

particular, one may use these PRNGs to encipher any given file using a simple XOR

July 26, 2007 14:17 WSPC/141-IJMPC 01059

876 P. Bouboulis

operation (stream-cipher like the one time pad). A seed is chosen by the user (the

password) and based on this seed enough pseudo random numbers are generated

using the above algorithms. These numbers are used to encipher the requested file

using a simple XOR operation. If the user wants to decrypt the file, he enters the

password, the same pseudo random numbers are generated and after the application

of a XOR operation to the enciphered file he gets the original file.

5.1. Analysis

PRNGs constructed from fractal interpolation functions are expected to have poor

statistical properties. The values of such PRNGs lie on the graph of a continuous

function and therefore, after a few iterations, the values are expected to be highly

correlated. On the other hand, non hyperbolic IFS may produce numbers that are

completely uncorrelated. In addition, there is no known method (except the collage

theorem see, Ref. 5) that can find the parameters needed to construct an hyperbolic

IFS that converges to a known attractor. The collage theorem may be applied to

find the parameters of an hyperbolic IFS, only if one knows the whole attractor.

Thus, if one uses only some of the first points of a FIF PRNG, he provides no

significant information to an adversary that tries to figure out the map parameters

using these points. In fact, even the whole set of points constructed by the PRNG

cannot give any important information, since it does not contain the actual points

of the attractor but only some of the least significant bits of their integer parts. In

the case of the non hyperbolic IFS PRNGs the task of the adversary is even more

difficult. Keep in mind that, non hyperbolic IFSs do not converge to a compact

subset of X , thus the collage theorem does not apply. These PRNGs produce points

with excellent statistical properties as shown in the next section.

6. Statistical Tests

This section presents the results of several statistical tests that were applied to

files of bits generated by the Fractal PRNGs using the RMDA. Similar (and some-

what better) results were obtained using MDA. For each fractal PRNG, a seed

of 17 integer numbers was used (N = 16) and the values L = 5 and K = 6

were chosen. The algorithms were implemented in C. For the construction of a

650 Mb file of random numbers on a Pentium IV microprocessor, running at

2.8 MHz, approximately 110 minutes were needed. The source code can be found in

“http://eudoxos.math.uoa.gr/∼ldalla/Fractal PRNG/home.htm”. The same tests

were applied to several other well-known PRNGs, like the Micali Schnorr and

the Blum Blum Shub (BBS) generators (which have been proved to be crypto-

graphically secure), the linear congruential, the lagged Fibonacci and the 3-DES

generators.

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 877

6.1. ENT test

ENT programa applies various tests to sequences of bytes stored in files and reports

the results. This set of tests includes:

(1) Computation of the entropy. (This value should be ≈ 8.)

(2) Chi-square Test. The chi-square test is the one of the most commonly used

tests for the randomness of data, and it is extremely sensitive to errors in

pseudorandom sequence generators. The chi-square distribution is calculated

for the stream of bytes in the file and expressed as an absolute number and a

percentage, which indicates how frequently a truly random sequence would

exceed the value calculated. If the percentage is greater than 99% or less than

1%, the sequence is almost certainly not random. If the percentage is between

99% and 95% or between 1% and 5%, the sequence is suspect. Percentages

between 90% and 95% or between 5% and 10% indicate the sequence is “almost

suspect”.

(3) Computation of Arithmetic Mean. (This value should be ≈ 127.5.)

(4) Monte Carlo computation of the value of pi.

(5) Computation of the serial correlation coefficient. (This value should be ≈ 0.)

Several files of size ≈ 12 Mbytes were created using different 17 byte keys. The

results are presented in Table 1. All files pass the test easily. Note that even bad

PRNGs such as the Linear Congruential PRNG pass the test.

6.2. NIST statistical test suite

The U.S. National Institute of Standards and Technology constructed a statistical

test suite for random and pseudo-random number generators.b The suite includes

Table 1. Ent test results.

PRNG Entropy Chi-square (%) Mean Monte Carlo pi Serial correlation

FIF PRNG 7.999983 50 127.4915 0.03% error −0.000031

IFS FPRNG 7.999984 50 127.5028 0.01% error 0.000648

IFS FPRNG 7.999983 50 127.4994 0.01% error −0.000199

HVIFS PRNG 7.999983 50 127.4933 0.02% error 0.000245

HVIFS PRNG 7.999984 50 127.4914 0.02% error 0.000085

Lagged Fibonacci 7.999983 25 127.5050 0.08% error −0.000049

Linear Congruential 7.999983 50 127.5311 0.04% error 0.000813

Micali Schnorr 7.999984 50 127.5304 0.02% error −0.000192

Blum Blum 7.999982 25 127.4912 0.01% error −0.000383

aENT test http://www.fourmilab.ch/random/
bNIST test http://csrc.nist.gov/rng/

July 26, 2007 14:17 WSPC/141-IJMPC 01059

878 P. Bouboulis

the Monobit test, the block-frequency test, the Runs test, the longest run of 1s

in a block test, the binary matrix rank test, the FFT test, the non-overlapping

template matching test (148 tests), the overlapping template matching test, the

Maurer’s Universal Statistical test, the Lempel-Ziv compression test, the linear

complexity test, the serial test (two tests), the approximate entropy test, the cu-

mulative sums test (two tests), the random excursions (eight tests) and the random

excursions variant test (18 tests). Each statistical test takes a sequence of bits and

returns one p-value ∈ [0, 1]. If the p-value is ≤ 0.01 the respective sequence “fails”

the test. Each test were applied to 100 sequences of 9 million bits each, generated

by one of the PRNGs. The emerging 100 p-values of each sequence produce a final

p-value for the PRNG. This p-value is examined to ensure uniformity. If the final

p-value is > 0.0001 then the sequences are considered to be uniformly distributed.

If the proportion of the sequences that fail the test is less than the minimum pass

rate indicated, then the PRNG “fails” the test. The results are shown in Table 2.

The PRNGs that were presented in the above sections, pass the majority of the

tests. The FIF PRNG pass all tests except Lempel-Ziv compression, where it fails

in uniformity only. The affine IFS PRNG and the HVIFS PRNG fails the FFT

test and its uniformity test and the uniformity test of Lempel-Ziv compression. All

major PRNGs fail the latter two tests, but the IFS PRNGs give better results. Note

that other PRNGs such as Modular Exponentiation, Linear and Cubic congruential

fails a lot of those tests.

6.3. DIEHARD battery of statistical tests

Professor G. Marsaglia proposed some tests that were designed to identify weak-

nesses in many common non-cryptographic PRNG algorithms. These tests are:

birthday spacings test, GCD, Gorilla (a “harder” monkey test), overlapping 5-

permutation test, binary rank test 31 × 31, binary rank test 32 × 32 binary rank

test 6 × 8, bitstream test, OPSO, OQSO and DNA tests, count the 1 s test on a

stream of bytes, count the 1 s test for specific bytes, parking lot test, minimum

distance test, 3D spheres test, squeeze test, overlapping sums test, runs test, craps

test. The tests analyse a single large file (≈ 12 M) of random numbers and returns

several (269) p-values which should be uniform on [0, 1), if the file contains truly

random bits. If one file gives several (more than six) p-values close to 1 or 0 the

PRNG fails the test. A final p-value is, also, computed to check the uniformity of

the p-values. This final p-value must be > 0.025 and < 0.975. We can measure the

quality of the generators using the below schema. p-values < 0.001 or > 0.999 are

considered bad and score 4, p-values < 0.005 or > 0.995 are considered suspect and

score 2, while p-values < 0.025 or > 0.975 are considered almost suspect and score

1. All other p-values score 0. The high scores indicate a bad PRNG (Table 3). Most

PRNGs including Linear congruential, Lagged Fibonacci and FIF PRNG fails the

tests. However, affine IFS, affine HVIFS, BBS and Micali’s PRNGs pass the tests

without problems.

J
u
ly

2
6
,
2
0
0
7

1
4
:1

7
W

S
P

C
/
1
4
1
-IJ

M
P

C
0
1
0
5
9

P
se

u
d
o

R
a
n
d
o
m

N
u
m

be
r

G
e
n
e
ra

tio
n

w
ith

th
e

A
id

8
7
9

Table 2. NIST Statistical Test Suit results. This table shows the results of the application of the NIST statistical
test suite to some very well known PRNGs (Micali, Blum Blum Shub etc.) and to the three fractal PRNGs. P
means the test is passed, F the test is failed and U the uniformity test failed. The number indicates the number of
tests that failed and the percentage the proportion of the sequences that pass the test.

Test PRNGs

FIF IFS HVIFS BBS 3-DES Micali

Monobit P P P P P P

Block Frequency P P P P P P

Cusum P P P P P P

Runs P P P P P P

Long Run P P P P P P

Rank P P P P P P

FFT U + P 71% U + P 84% U + F 85% U + F 72% U + F 68% U + F 79%

Aperiodic (148) 2F 95% P P P P P

Periodic P P P P P P

Universal P P P P P P

Entropy P P P P P P

Ran. Excursion (8) P P P 1F 95.6% P P

Ran. Excursion-V (18) P P P P P P

Serial (2) P P P P P P

Lempel-Ziv U U U U U U

Linear-Compl P P P P P P

Min pass rate
(with the exception of 0.96015 0.96015 0.96015 0.96015 0.96015 0.96015
the random excursion-V)

Min pass rate 0.95888 0.957624 0.957624 0.958709 0.958180 0.957431
(for random excursion-V)

July 26, 2007 14:17 WSPC/141-IJMPC 01059

880 P. Bouboulis

Table 3(a). Diehard Battery of Tests results. The tests were applied to 12Mb files generated
by each generator. Note that some tests (GCD, Gorilla) require much more points.

Test PRNGs

FIF IFS HV IFS Linear Cong BBS Micali Lagged Fibonacci

Score 250 13 15 369 14 17 57

p-value 0 0.59 0.38 0 0.88 0.28 0.003

Table 3(b). Results from the application of ENT and Diehard Battery of Tests on
650 Mb files. These results include GCD and Gorilla tests. The four PRNGs pass all
tests. The seed used for the RMDA IFS is {231, 128, 67, 190, 39, 100, 161, 18, 91, 130,
201, 55, 78, 160, 28, 179, 227} and the seed used for the RMDA HV IFS is {231, 128,
67, 190, 39, 100, 161, 18, 91, 130, 201, 55, 78, 160, 28, 179, 155, 101, 202, 54, 93, 15,
121, 187, 200, 101, 114, 93, 142, 51, 12, 83}.

Test PRNGs

IFS HV IFS Micali BBS

Diehard score 16 17 17 32

Diehard p-value 0.793869 0.674611 0.244345 0.462359

ENT entropy 8.00 8.00 8.00 8.00

ENT Chi square 25% 50% 10% 95%

ENT mean value 127.5004 127.4969 127.5013 127.5014

ENT monte carlo 0.00% 0.01% 0.00% 0.00%

ENT correlation −0.000052 0.000024 −0.000037 0.000077

Table 3(c). Results from the application of ENT and Diehard Battery of Tests
on 1G b files. These results include GCD and Gorilla tests. The four PRNGs
pass all tests. The seed used for the RMDA IFS is {152, 34, 191, 172, 205, 94,
142, 11, 54, 112, 202, 37, 95, 241, 142, 74, 191, 82, 32} (N = 19) and the seed
used for the RMDA HVIFS is {152, 34, 191, 172, 205, 94, 142, 11, 54, 112, 202,
37, 95, 241, 142, 74, 191, 82, 32, 123, 204, 161, 209, 105, 24, 32, 191, 100, 204,
53, 252, 184, 73, 200} (N = 17).

Test PRNGs

IFS HV IFS Micali BBS

Diehard score 16 21 23 32

Diehard p-value 0.957046 0.536103 0.871725 0.462359

ENT entropy 8.00 8.00 8.00 8.00

ENT Chi square 75% 50% 50% 95%

ENT mean value 127.4984 127.4969 127.4978 127.5014

ENT monte carlo 0.01% 0.00% 0.00% 0.00%

ENT correlation −0.000015 0.000013 −0.000026 0.000077

July 26, 2007 14:17 WSPC/141-IJMPC 01059

Pseudo Random Number Generation with the Aid 881

7. Conclusions

Three new methods to construct Pseudo Random Numbers were proposed. Two of

them exhibited to have very good statistical properties. In fact, they pass all the

well known statistical tests that other known generators fail. Note that, the two

generators that pass all of those tests (Micali-Schnorr and BBS) have been proven

cryptographically secure. The generators are easy to implement. The amount of time

needed to produce a series of random numbers is comparable with the amount of

time that the Micali-Schnorr and BBS generators need to produce an equal series of

numbers. However, they are not fast enough to be used for simulation. In addition,

there is no method known that one can use to predict the next numbers produced

by the PRNGs (it seems that such a method does not exist). However, statistical

tests cannot replace mathematical proofs. In depth theoretical analysis must follow

in order to prove that these PRNGs are actually non predictable and therefore

cryptographically secure. Future research should include some additional statistical

properties, such as the (asymptotical) independence of the random bits (so that

the produced bits are independent and uniformly distributed) and proof that the

sequences, that are produced, are computational indistinguishable (in polynomial

time) from truly random ones. Detailed study of the PRNG’s behavior in discrete

spaces is, also, needed.

In the statistical testing, L was set equal to five in order to use the standard 64-

bit floating point representation. Greater values of L may be used in combination

with a more extended floating point representation and are expected to give even

better results. Note that one can use IFSs on R
3 or on R

4 or non affine IFSs on R
2

(which do not converge) and construct similar PRNGs which are expected to, also,

have good statistical properties.

Acknowledgments

I would like to thank Dr. A. C. Dallas for valuable discussions and professors Leoni

Dalla and Sergios Theodoridis for their insights.

References

1. B. F. Barnsley, J. Elton, D. Hardin and P. Massopust, Hidden variable fractal inter-
polation functions, SIAM J. Math. Anal. 20, 1218–1242 (1989).

2. B. F. Barnsley and A. N. Harrington, The calculus of fractal interpolation functions,
J. Approx. Theory 57, 14–43 (1989).

3. M. F. Barnsley and L. P. Hurd, Fractal Image Compression (1993).
4. M. F. Barnsley, Fractal functions and interpolation, Constr. Approx. 2, 303–329

(1986).
5. M. F. Barnsley, Fractals Everywhere, 2nd edn. (Academic Press Professional, 1993).
6. P. Bouboulis and L. Dalla, Hidden variable vector valued fractal interpolation func-

tions, Fractals 13(3), 227–232 (2005).
7. P. Bouboulis, L. Dalla and V. Drakopoulos, Image compression using recurrent bi-

variate fractal interpolation surfaces, Internat. J. Bifur. Chaos Appl. Sci. Engrg.,
Complexity: A Unifying Direction in Science, Volume II, July 2006.

July 26, 2007 14:17 WSPC/141-IJMPC 01059

882 P. Bouboulis

8. P. Bouboulis, L. Dalla and V. Drakopoulos, Construction of recurrent bivariate fractal
interpolation surfaces and computation of their box-counting dimension, J. Approx.

Theory 141, 99–117 (2006).
9. P. Bouboulis and L. Dalla, Closd fractal interpolation surfaces, J. Math. Anal. Appl.

327(1), 116–126 (2007).
10. P. Bouboulis, V. Drakopoulos and S. Theodoridis, Image compression using affine

fractal interpolation surfaces on rectangular lattices, Fractals 14(4), 1–11 (2006).
11. Y. Fisher, Fractal Image Compression: Theory and Application (Springer Verlag, New

York, 1995).
12. D. P. Hardin and P. R. Massopust, The capacity of a class of fractal functions, Math.

Phys. 105, 455–460 (1986).
13. N. Lu, Fractal Imaging (Academic Press, 1997).
14. P. R. Massopust, Fractal Functions, Fractal Surfaces and Wavelets (Academic Press,

1994).
15. D. S. Mazel and M. H. Hayes, Using iterated function systems to model discrete

sequences, IEEE Trans. Signal Process. 40, 1724–1734 (1992).
16. D. S. Mazel, Representation of discrete sequences with three-dimensional iterated

function systems, IEEE Trans. Signal Process. 42, 3269–3271 (1994).
17. B. B. Nakos and C. Mitsakaki, On the fractal character of rock surfaces, Int. J. Rock.

Mech. Min. Sci. Geomech. Abstr. 28, 527–533 (1991).
18. C. S. Pande, L. E. Richards, N. Louat, B. D. Dempsey and A. J. Schwoeble, Fractal

characterization of fractured surfaces, Acta Metallurgica 35, 1633–1637 (1987).
19. J. R. Price, Resampling and reconstructing with fractal interpolation functions, IEEE

Signal Process. Letters 5, 228–230 (1998).
20. P. Wong, J. Howard and J. Li, Surfaces roughening and the fractal nature of rocks,

Phys. Rev. Lett. 57, 637–640 (1986).

